Vibrating Sample Magnetometry
A magnetometer is an instrument to measure the magnitude and direction of a magnetic field. The most commonly used magnetometric technique to characterize magnetic materials is vibrating sample magnetometry (VSM). VSMs can measure the magnetic properties of magnetically soft (low coercivity) and hard (high coercivity) materials in many forms: solids, powders, single crystals, thin films, or liquids. They can be used to perform measurements from low to high magnetic fields employing electromagnets, Halbach rotating permanent magnet arrays, or high-field superconducting magnets. They can be used to perform measurements from very low to very high temperatures with integrated cryostats or furnaces, respectively. And, they possess a dynamic range extending from 10 −8 emu (10 −11 Am 2 ) to above 10 3 emu (1 Am 2 ), enabling them to measure materials that are both weakly magnetic (ultrathin films, nanoscale structures, etc.) and strongly magnetic (permanent magnets). In this chapter, we will discuss the VSM measurement technique and its implementation in an electromagnet. We will also discuss relevant extensions of the technique that provide variable temperature capability, a vector VSM for magnetic anisotropy studies, and implementation of data acquisition algorithms for first-order reversal curve (FORC) measurements for characterizing magnetic interactions and coercivity distributions in magnetic materials. We will present typical measurement results over a range of experimental conditions for various materials to demonstrate the VSM capability for magnetic materials characterization.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 74.89 Price includes VAT (France)
Softcover Book EUR 94.94 Price includes VAT (France)
Hardcover Book EUR 158.24 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Introduction of Vibrating Sample Magnetometer for Magnetic Characterization
Chapter © 2022
Introduction of Vibrating Sample Magnetometer for Magnetic Characterization
Chapter © 2022
Magnetic Force Microscopy for Magnetic Recording and Devices
Chapter © 2019
References
- R.K. Dumas, T. Hogan, Recent advances in SQUID magnetometry, in Magnetic Measurement Techniques for Materials Characterization. Springer Nature (2021) Google Scholar
- B.C. Dodrill, H.S. Reichard, Alternating gradient magnetometry, in Magnetic Measurement Techniques for Materials Characterization. Springer Nature (2021) Google Scholar
- B.L. Morris, A. Wold, Faraday balance for measuring magnetic susceptibility. Rev. Sci. Instrum. 39, 1968 (1937) Google Scholar
- A. Sella, Gouy’s Tube (Royal Society of Chemistry, 2010) Google Scholar
- L. Rondin, J.P. Tetienne, T. Hingant, J.F. Roch, P. Maletinsky, V. Jacques, Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014) ArticleCASGoogle Scholar
- Lake Shore Cryotronics, USA, www.lakeshore.com
- Microsense, USA, www.microsense.net
- Quantum Design, USA, www.qdusa.com
- Cryogenic Limited, UK, www.cryogenic.co.uk
- I.D. Mayergoyz, Mathematical Models of Hysteresis and their Applications, 2nd edn. (Academic Press, 2003) Google Scholar
- S. Foner, Versatile and Sensitive Vibrating Sample Magnetometer. Rev. Sci. Instrum. 30, 548 (1959) ArticleGoogle Scholar
- US Patent # 2,946,848 Google Scholar
- A. Zieba, S. Foner, Detection coil, sensitivity function, and geometry effects for vibrating sample magnetometer. Rev. Sci. Instrum. 53, 1344 (1982) ArticleGoogle Scholar
- National Institute of Standards & Technology (NIST) standard reference materials (SRM) 772a (Ni) and 2853 (YIG) Google Scholar
- J. Lindemuth, J. Krause, B. Dodrill, Finite sample size effects on the calibration of vibrating sample magnetometer. IEEE Trans. Magn. 37, 4 (2001) ArticleGoogle Scholar
- J. Mallinson, Magnetometry coils and reciprocity. J. Appl. Phys. 37, 2514 (1966) ArticleGoogle Scholar
- A. Niazi, P. Poddar, A.K. Rastogi, A precision, low-cost vibrating sample magnetometer. Curr. Sci. 79, 1 (2000) Google Scholar
- R.M. El-Alaily, M.K. El-Nimr, S.A. Saafan, M.M. Kamel, T.M. Meaz, S.T. Assar, Construction and calibration of a low-cost and fully automated vibrating sample magnetometer. J. Magn. Magn. Mater. 386, 25 (2015) ArticleCASGoogle Scholar
- D. Jordan, D. Chavez, D. Laura, L.M. Hilario, E. Moenteblanco, A. Gutarra, L. Felix, Detection of magnetic moment in thin films with a home-made vibrating sample magnetometer. J. Magn. Magn. Mater. 456, 56 (2018) ArticleCASGoogle Scholar
- V. Dominguez, A. Quesada, J.C. Mainuez, L. Moreno, M. Lere, J. Spottorno, F. Giacomone, J.F. Ferandez, A. Hernando, M.A. Garcia, A simple vibrating sample magnetometer for macroscopic samples. Rev. Sci. Instrum. 89, 034707 (2018) ArticleGoogle Scholar
- V.I. Nizhankovskii, L.B. Lugansky, Vibrating sample magnetometer with a step motor. Meas. Sci. Technol., 1533 (2006) Google Scholar
- J.P.C. Bernards, G.J.P. van Engelen, H.A.J. Cramer, An improved detection coil systems for a biaxial vibrating sample magnetometer. J. Magn. Magn. Mater. 123, 141 (1993) ArticleGoogle Scholar
- E.O. Samel, T. Bolhuis, J.C. Lodder, An alternative approach to vector vibrating sample magnetometer detection coil setup. Rev. Sci. Instrum. 69, 9 (1998) Google Scholar
- B.C. Dodrill, Model 8600 Vector Vibrating Sample Magnetometer, Lake Shore Cryotronics Application Note (2020) Google Scholar
- S.U. Jen, J.Y. Lee, Method of easy axis determination of uniaxial magnetic films by vector vibrating sample magnetometer. J. Magn. Magn. Mater. 271, 237 (2004) ArticleCASGoogle Scholar
- P. Stamenov, J.M.D. Coey, Vector vibrating sample magnetometer with a permanent magnet flux source. J. Appl. Phys. 99, 08D912 (2006) ArticleGoogle Scholar
- C.R. Pike, A.P. Roberts, K.L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 85, 6660 (1999) ArticleCASGoogle Scholar
- A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. 105, 461 (2000) Google Scholar
- A. Rotaru, J. Lim, D. Lenormand, A. Diaconu, J. Wiley, P. Postolache, A. Stancu, L. Spinu, Interactions and reversal field memory in complex magnetic nanowire arrays. Phys. Rev. B 84(13) (2011) 134431 Google Scholar
- O. Trusca, D. Cimpoesu, J. Lim, X. Zhang, J. Wiley, A. Diaconu, I. Dumitru, A. Stancu, L. Spinu, Interaction effects in Ni nanowire arrays. IEEE Trans. Magn. 44(11), 2730 (2008) ArticleCASGoogle Scholar
- A. Arefpour, M. Almasi-Kashi, A. Ramazani, E. Golafshan, The investigation of perpendicular anisotropy of ternary alloy magnetic nanowire arrays using first order reversal curves. J. Alloys Comp. 583, 340 (2014) ArticleCASGoogle Scholar
- B. C. Dodrill, L. Spinu, First-Order-Reversal-Curve Analysis of Nanoscale Magnetic Materials, Technical Proceedings of the 2014 NSTI Nanotechnology Conference and Exposition, CRC Press (2014) Google Scholar
- A. Sharma, M. DiVito, D. Shore, A. Block, K. Pollock, P. Solheid, J. Feinberg, J. Modiano, C. Lam, A. Hubel, B. Stadler, Alignment of collagen matrices using magnetic nanowires and magnetic barcode readout using first order reversal curves (FORC). J. Magn. Magn. Mater. 459, 176 (2018) ArticleCASGoogle Scholar
- F. Beron, L. Carignan, D. Menard, A. Yelon, in Extracting Individual Properties from Global Behavior: First Order Reversal Curve Method Applied to Magnetic Nanowire Arrays, Electrodeposited Nanowires and their Applications, ed. by N. Lupu, (INTECH, Croatia, 2010), p. 228 Google Scholar
- R. Dumas, C. Li, I. Roshchin, I. Schuller, K. Liu, Magnetic fingerprints of sub-100 nm Fe Nanodots. Phys. Rev. B 75, 134405 (2007) ArticleGoogle Scholar
- D. Gilbert, G. Zimanyi, R. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. Vincent, K. Liu, Quantitative decoding of interactions in tunable nanomagnet arrays. Sci. Rep. 4, 4204 (2014) ArticleGoogle Scholar
- J. Graffe, M. Weigand, C. Stahl, N. Trager, M. Kopp, G. Schutz, E. Goering, Combined first order reversal curve and X-ray microscopy investigation of magnetization reversal mechanisms in hexagonal Antidot arrays. Phys. Rev. B 93, 014406 (2016) ArticleGoogle Scholar
- B. Valcu, D. Gilbert, K. Liu, Fingerprinting Inhomegeneities in recording media using first order reversal curves. IEEE Trans. Magn. 47, 2988 (2011) ArticleGoogle Scholar
- A. Stancu, E. Macsim, Interaction field distribution in longitudinal and perpendicular structured particulate media. IEEE Trans. Magn. 42(10), 3162 (2006) ArticleGoogle Scholar
- M. Winklhofer, R.K. Dumas, K. Liu, Identifying reversible and irreversible magnetization changes in prototype patterned media using first- and second-order reversal curves. J. Appl. Phys. 103, 07C518 (2008) ArticleGoogle Scholar
- R. Dumas, C. Li, L. Roshchin, I. Schuller, K. Liu, Deconvoluting reversal modes in exchange biased nanodots. Phys. Rev. B 144410 (2012) Google Scholar
- R. Gallardo, S. Khanai, J. Vargas, L. Spinu, C. Ross, C. Garcia, Angular dependent FORC and FMR of exchange biased NiFe multilayer films. J. Phys. D. Appl. Phys. 50, 075002 (2017) ArticleGoogle Scholar
- N. Siadou, M. Androutsopoulos, I. Panagiotopoulos, L. Stoleriu, A. Stancu, T. Bakas, V. Alexandrakis, Magnetization reversal in [Ni/Pt](6)/Pt(x)/[Co/Pt](6) multilayers. J. Magn. Magn. Mater. 323(12), 2011 (1671) Google Scholar
- T. Schrefl, T. Shoji, M. Winklhofer, H. Oezeit, M. Yano, G. Zimanyi, First order reversal curve studies of permanent magnets. J. Appl. Phys. 111, 07A728 (2012) ArticleGoogle Scholar
- M. Pan, P. Shang, H. Ge, N. Yu, Q. Wu, First order reversal curve analysis of exchange coupled SmCo/NdFeB nanocomposite alloys. J. Magn. Magn. Mater. 361, 219 (2014) ArticleCASGoogle Scholar
- M. Rivas, J. Garcia, I. Skorvanek, J. Marcin, P. Svec, P. Gorria, Magnetostatic interaction in soft magnetic bilayer ribbons unambiguously identified by first order reversal curve analysis. Appl. Phys. Lett. 107, 132403 (2015) ArticleGoogle Scholar
- V. Franco, F. Beron, K. Pirota, M. Knobel, M. Willard, Characterization of magnetic interactions of multiphase magnetocaloric materials using first order reversal curve analysis. J. Appl. Phys. 117, 17C124 (2015) ArticleGoogle Scholar
- B.C. Dodrill, First-Order-Reversal-Curve Analysis of Nanocomposite Permanent Magnets, Technical Proceedings of the 2015 TechConnect World Innovation Conference and Expo, CRC Press (2015) Google Scholar
- C. Carvallo, A.R. Muxworthy, D.J. Dunlop, First-order-reversal-curve (FORC) diagrams of magnetic mixtures: Micromagnetic models and measurements. Phys. Earth Planet. Inter. 154, 308 (2006) ArticleGoogle Scholar
- R.J. Harrison, J.M. Feinberg, FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem. Geophys. Geosyst. 9, 11 (2008) ArticleGoogle Scholar
- R. Egli, VARIFORC: An optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams. Glob. Planet. Chang. 203, 110 (2013) Google Scholar
- Y. Cao, M. Ahmadzadeh, K. Xe, B. Dodrill, J. McCloy, Multiphase magnetic systems: Measurement and simulation. J. Appl. Phys. 123(2), 023902 (2018) ArticleGoogle Scholar
- C. Dubrota, A. Stancu, What does a first order reversal curve really mean: A case study: Array of ferromagnetic nanowires. J. Appl. Phys. 113, 043928 (2013) ArticleGoogle Scholar
- D. Roy, P.S.A. Kumar, Exchange spring behaviour in SrFe12O19-CoFe2O4 nanocomposites. AIP Adv. 5 (2015) Google Scholar
Author information
Authors and Affiliations
- Lake Shore Cryotronics, Inc., Westerville, OH, USA Brad Dodrill & Jeffrey R. Lindemuth
- Brad Dodrill